
TechKnowToneIssue: 1.0 Released: 05/06/2023

Uni-Bot (ESP32)
Calibration

Calibration is an essential process!

TechKnowToneIssue: 1.0 Released: 05/06/2023

Voltage Regulator

Page 2

Set up the voltage regulator independently using an external power supply

and multimeter, before you plug in the micro and drivers. The input voltage

source should be > 8 volts, and we trim the regulators output to achieve 3.3

volts. This is normally done by turning the small potentiometer on the pcb in a

clock-wise direction, to reduce the output voltage.

Once the robot is wired and assembled, plug in the voltage regulator, ensuring

the correct orientation, with the potentiometer and inductor towards the

lower edge. Install the three batteries, and check that the output of the

voltage regulator is at 3.3 volts.

Now insert the ESP32 micro, with the power off, and

download the code into it. When power is re-applied,

this should confirm that the RGB LED’s are working. All

three SimpleFOC mini drivers power LEDs should also

light up.

GNDVin

GND3v3

The accuracy of the analogue to digital converter (ADC)

in the ESP32 can be improved by calibrating it’s

measurements against a multimeter, whilst using an

adjustable voltage supply. This is important for setting

the correct motor PWM values, to prevent them over-

heating.

I soldered a 1MΩ resistor across the voltage regulators

input pins, to make it easier to attach an external power

supply for these measurements, and obtained the

following values to enter into the code:

11.4v ==

10.8v ==

12.3v ==

10.0v ==

TechKnowToneIssue: 1.0 Released: 05/06/2023

MPU6050A Orientation

With the MPU6050 mounted on the right leg as shown, the

following applies:

Pitch - Z gyro, -ve tilt forwards, +ve tilt backwards

- Y accelerometer, -ve lean forwards, +ve lean backwards

Roll - Y gyro, +ve tilt right, -ve tilt left

- Z accelerometer, -ve lean right, +ve lean left

Yaw - X gyro, +ve turning right ,-ve turning left

- X accelerometer, , -ve upright, +ve upside down

Note that the X-axis accelerometer is pointing downwards, when

the robot is upright and balancing. Hence it is greatly influenced by

gravity and give a max negative reading.

Yacc

XaccXacc

Zacc

The X-axis value is negative because the

gravitational force is acting on the sensor as

if it were accelerating upwards, and

therefore in the opposite direction to the

polarity indicated by the diagram.

The MPU6050 sensor values will contain

offsets, due to manufacturing tolerances, and

may not give maximum values. We therefore

need to determine these offsets, and then

remove them in our code, so as to improve

the overall accuracy of the system.

The next page explains how you do this.

MPU6050A

Page 3

TechKnowToneIssue: 1.0 Released: 05/06/2023

Uni-Bot Pitch PID Adjustment

The aim is to balance the Uni-Bot using the ‘Pitch’ PID controller code, when the

robot is level, at 0° facing forwards. The drive wheel is mounted on an adjustable

slide to make this possible; however, the position of the drive wheel will depend

on what weights you have fitted to the roll and turn reaction wheels, respectively,

and the distribution of weight within the robot. So the angle at which the robot

can be balanced my not be 0° initially, and we use the self-balancing nature of the

code to find the set-point for balance; a code variable named SbPtchSp.

If the pitch start angle, PtchStartAng, is set to 0° initially, then this is the starting

point for the auto-adjustment of SbPtchSp. If this isn’t the point of balance, the

robot will naturally fall forwards or backwards, developing an error signal in the

PID controller, which in turn will move the drive wheel to compensate for this out

of balance state. The code senses this condition, and automatically adjusts the

balance setpoint SbPtchSp to counter this behaviour. The robot will drive back and

forth, for a few moments initially, until SbPtchSp is at the correct value.

To start with, the position of the drive wheel may be such that the robots natural

pitch balance is out by several degrees, and the auto-adjustment code can’t

compensate for this. If this is the case the robot will have a tendency to run off,

forwards or backwards, depending on the error. We can fix this, by adjusting the

start angle, giving the code a greater chance of achieving balance.

If the robot wants to drive backwards, then adjust the start angle to a negative

value, say -2.00° and try it again. And if the robot wants to drive forwards at the

start, then make the start angle a positive value, like +2.00°.

Through a process of trial and error we are adjusting the position of the drive

wheel, such that the start angle can be set to 0°, and the automatic self-balance

set point SbPtchSp adjustment ends up very close to that value.

0°

+30°

-30°

Wheel

adjustment

Tilt forward

Tilt backward

Use this guide

to aid tuning

the Pitch PID

controller

Page 4

This temporary guide

allows the Uni-Bot to pitch

quite freely, whilst

constraining its desire to

roll sideways.

TechKnowToneIssue: 1.0 Released: 05/06/2023

Uni-Bot Roll PID Adjustment

Tune the Pitch PID controller, using the ‘Guide’ attachment before attempting to

tune the Roll PID controller. As this will give you experience of tuning a controller

before attempting the greater challenge. As with the Pitch PID controller, you can

adjust the Roll PID coefficients simply by clicking on the blue digits in the Monitor+

app. Any changes will be lost when the micro is reset, so you note them down and

make changes to the code, once you have values that you want to use.

The Roll PID controller is very sensitive to being given the correct start angle,

which is the angle at which the controller becomes active during the initiation

process (see video). The self-balancing adjustment will make for some allowance

in this initially, so you observe the angle to which the system is trying to get to and

set that as the start angle. You will see from the Monitor+ screen shot below, that

my Uni-Bot Roll PID self-balances at -1.00° and that is my start angle in code.

+ve Roll angle-ve Roll angle

Using GPn = 4 in the ‘scope’ display, enables you to view what is happening within the Roll PID

controller whilst the Uni-Bot is self-balancing. You should expect to see the motor velocity changing in

in a sinusoidal fashion, as the robot sways from side to side about the balance point; with the P-gain

term dominating the output, whilst the D-gain provides corrective action, and the I-gain provides an

underlying sinusoidal trace in response to small changes in angular error.

If you use the same arrangement of reaction wheel weights as me, you should come up with very

similar Roll PID coefficients.

Page 5

TechKnowToneIssue: 1.0 Released: 05/06/2023

Uni-Bot Turn Speed Adjustment

We know that the turning force exhibited by a reaction wheel is proportional to

its rate of acceleration. To increase the turning force developed, we either add

weights to the wheel or increase its rate of acceleration. But adding too much

weight will affect the robots ability to balance, and its pitch self-balance setpoint.

And we can’t just keep accelerating the wheel, due to max speed limitations of

the BLDC motor and the SimpleFOC driver. So there is a compromise to be had

here.

So I chose to use eight M5 nuts and bolts on the turn wheel, as acceleration test

suggested that would be more than enough to turn the robot round. With those

weights added, I needed to determine a practical max. rate of acceleration to

achieve suitable turning, and also a minimum rate of deceleration to apply when

slowing the wheel down.

The ‘Turn Control’ screen was coded to achieve this. Using this display you can

click on the blue digits to set values for max acceleration and min deceleration,

whilst using the Wii Nunchuk controller to trigger the demand.

The aim is not to have the Uni-Bot turning like a spinning top, when a demand is

applied, and for the wheel to slow down relatively quickly, so that further

demands can be applied.

The Monitor+ screen shot here shows the values which I came up with, for my

Uni-Bot. You may like this, or determine a more/less aggressive turning

characteristic for your robot.

The ratio of Max/Min appears to be in the order of 4:1

If the turn wheel accelerates clockwise, then turning

force on Uni-Bot is anti-clockwise.

If the turn wheel accelerates anti-clockwise, then

turning force on Uni-Bot is clockwise.

Page 6

