
TechKnowToneIssue: 1.0 Released: 19/02/2024

SpidaBot
Servo Calibration

An important process, that will govern your robots performance.

TechKnowToneIssue: 1.0 Released: 19/02/2024

MG92B

Page 2

Why do we need to calibrate the servos?

• No two servos are the same.

• Servos can be damaged if not setup correctly.

• Course calibration must be performed during the assembly process.

• This sets approximate positions for the leaver arms.

• A servo drive shaft has 20 splined teeth == 18° (best fit +/-9°)

• Course calibration ensures servos are within mechanical range/limits.

• Fine calibration determines min/max robot physical limits.

• The ESP32 C++ code needs limit values in order to work accurately.

• Hence, all SpidaBots have a unique set of calibrated PWM code values.

• No two SpidaBots would ever be exactly the same.

• Code limits and default values would be different for each one.

• Once calibrated we can use angles, as common values, not PWM.

Servo calibration is performed in three stages:
• Course ensures mechanical parts are assembled correctly.

• Fine calibration, performed during testing, for accurate movement.

• Repeat this process for a given servo if it is ever replaced.

Only use genuine Tower Pro servos, for best performance.

20 teeth

18°

TechKnowToneIssue: 1.0 Released: 19/02/2024

Servo Testing

The SpidaBot employs 20 servos, therefore needing two PCA9685 controllers in

tandem to provide the PWM control signals. The Adafruit_PWMServoDriver.h

library, used in this project, enables you to set the base clock from which all of

the PWM signals are derived. The base clock is passed into a hardware counter,

which has a range of 4096 counts. By setting a start and end count values, you

define when a given PWM signal will be driven HIGH and LOW. The higher the

base clock frequency, the greater the control we have over the PWM pulse

width. In this project we will use a PWM frequency of 125 Hz.

I have created a Windows app which, when used with an ESP32 micro and the

SpidaBot code, enables you to control up to four PCA9685 boards. Selected

servos will respond to the slider settings, so you can determine what PWM

values are required to set the servo control arms to a particular position.

This app is used for both course settings, during the build process, and the final

fine adjustment settings, once all of the legs have been attached to the SpidaBot

robot.

You can either wait until the robot build process has reached the point where

servos are being attached, or create a prototype lash-up circuit to try out the

app and PCA9685 boards on their own.

The app can be used with other projects employing servos, provided that you

use the code in SpidaBot, which decodes and implements the serial commands.

Select

board

Select

PWM Freq.

Enable

outputs

Select

channel

16 servo channels per board

Page 3

TechKnowToneIssue: 1.0 Released: 19/02/2024

Servo Channel Assignments

1
K

Ω

I2C Bus with

pull-up resistor

3v3

6v3

I2C control from

ESP32 micro

3v3

Tilt Pan

PCA1

PCA0
T

ilt

P
a
n

F
R

H

F
R

K

F
R

A

M
R

H

M
R

K

M
R

A

R
R

H

R
R

K

R
R

A

F
L
H

F
L
K

F
L
A

M
L
H

M
L
K

M
L
A

R
L
H

R
L
K

R
L
A

P
C

A
1
_
1
5

P
C

A
1
_
1
1

P
C

A
1
_
1
0

P
C

A
1
_
0
9

P
C

A
1
_
0
7

P
C

A
1
_
0
6

P
C

A
1
_
0
5

P
C

A
1
_
0
3

P
C

A
1
_
0
2

P
C

A
1
_
0
1

P
C

A
0
_
0
0

P
C

A
0
_
0
4

P
C

A
0
_
0
5

P
C

A
0
_
0
6

P
C

A
0
_
0
8

P
C

A
0
_
0
9

P
C

A
0
_
1
0

P
C

A
0
_
1
2

P
C

A
0
_
1
3

P
C

A
0
_
1
4

Front

Viewed from above, this diagram shows the servo

assignments for the two PCA9685 boards. Note that board

PCA0 is fed I2C bus signals from the micro, and that these

signals are then passed through to board PCA1.

The boards receive 6v3 power for the servos, from their

centre screw terminals. However, their power lamps only

light when there is 3v3 on the VCC pins. Note that the pan

and tilt micro servos for the ESP-CAM are powered from 5v

using separate 3 pin strips, mounted between the two

boards. But their PWM signals are still fed from the boards,

from PCA0_00 and PCA1_15 pins, respectively.

NC

6v3 power

At boot up, or if reset, the digital pins of

the ESP32 are set as high impedance

inputs; and the boards have a 10k pull-

down resistor on the OE input. This

could lead to either board outputting

PWM signals to the servos, and the

robot jumping. To avoid this, a 1kΩ

resistor is wired between the 3v3 pin

and OE, to pull it up until the code in the

micro takes control. Fit the 1kΩ resistor,

as seen on the right of this diagram.

Page 4

TechKnowToneIssue: 1.0 Released: 19/02/2024

Servo Channel Control

Pan PCA0_00

FLH PCA0_04

FLK PCA0_05

FLA PCA0_06

MLH PCA0_08

MLK PCA0_09

MLA PCA0_10

RLH PCA0_12

RLK PCA0_13

RLA PCA0_14

Tilt PCA1_15

FRH PCA1_11

FRK PCA1_10

FRA PCA1_09

MRH PCA1_07

MRKPCA1_06

MRA PCA1_05

RRH PCA1_03

RRK PCA1_02

RRA PCA1_01

The assignment of servo channels maps onto the 16-Channel controller app as follows. Note that we only use 20 of the

available 32 outputs. The remaining 12 are ignored. The OE button acts as a global enable/disable switch. To make a channel

active you simply click on its left-hand channel number, and the slider turns red. Click on the board field number to select

boards 0 – 3. Note that the PCA references contain the board numbers, as in PCA0_05 and PCA1_05, which are channel 5’s

on boards 0 and 1. Leave the PWM frequency set at 125Hz. A dither signal can be added to a PWM channel to step the servo

either side of its current value, to see what its true centre resting position is, given that servos have a deadband.

Board 0 Board 1

Page 5

TechKnowToneIssue: 1.0 Released: 19/02/2024

Servo Assignments – facing up

The following channel numbers have been assigned to

the SpidaBot servos, for future reference in this

document, and in the ESP32 code. In this diagram the

Pan servo is not visible, it is inside the case, so the

reference PCA0_00 sits on the micro plate body.

Your wiring of the servos, when plugged into the

PCA9685 controllers, must match these assignments,

for the code and the rest of this document to be

correct.

FRH PCA1_11

MRH PCA1_07

RRH PCA1_03

FRK PCA1_10

FRA PCA1_09

MRK

PCA1_06

MRA

PCA1_05

RRK PCA1_02

RRA PCA1_01

Pan PCA0_00

FLH PCA0_04

FLK PCA0_05

FLA PCA0_06

MLH PCA0_08

MLK

PCA0_09

MLA

PCA0_10

RLH PCA0_12

RLK PCA0_13

RLA PCA0_14

Tilt PCA1_15

Front

Rear

Page 6

Within the main code we use the servo references, like

SMLA and SFRH, rather than the PCA numbers. As it is

easier to understand the position of the leg, to which

the code is referring.

TechKnowToneIssue: 1.0 Released: 19/02/2024

Servo Assignments – facing down

The following channel numbers have been assigned to

the SpidaBot servos, for future reference in this

document and in the ESP32 code. In this diagram the

Pan servo PCA0_00 is not visible, so the reference sits

on the micro plate body.

The assignment is the same as the previous diagram,

it’s just sometimes useful to have alternative views

when calibrating servos.

FRH PCA1_11

MRH PCA1_07

RRH PCA1_03

FRK PCA1_10

FRA PCA1_09

MRK

PCA1_06

MRA

PCA1_05

RRK PCA1_02

RRA PCA1_01

Pan PCA0_00

FLH PCA0_04

FLK PCA0_05

FLA PCA0_06

MLH PCA0_08

MLK

PCA0_09

MLA

PCA0_10

RLH PCA0_12

RLK PCA0_13

RLA PCA0_14

Tilt PCA1_15

Front

Rear

Page 7

TechKnowToneIssue: 1.0 Released: 19/02/2024

Course Calibration – Hip Servos

At this stage it is assumed that all six of the hip servos have been attached to

the Hip frame and plugged into their respective PCA9685’s. Here we will set

up the right-hand side of the SpidaBot, with the left-hand process being the

same, but with the front and rear servos being in effect reversed.

Using the 16-channel app, and the code flashed into the ESP32 micro, we

select servo 7 on board 1, enable OE, and move the slider to 768, which will

give a 1500µs PWM pulse train, setting the right-hand middle servos drive

shaft to its nominal centre position. Then attach the leaver arm to the servo

as shown, to best achieve the centre position. The splines on the drive shaft

may compromise your ability to achieve this, so find the best position.

MRH PCA1_07

FRH PCA1_11

RRH PCA1_03

1237

756

300

738

330

1146

60°

60°

786

1258

384

MRH PCA1_07

RRH PCA1_03

FRH PCA1_11
Channel 11 being used on

board 1 to control PCA1_11

Page 8

TechKnowToneIssue: 1.0 Released: 19/02/2024

Course Calibration – Knee Servos

Now attach one of the right-hand knee servos to a hip hoint, and plug it into

the corresponding PCA9685 connector. Ignore the excess wire at this stage,

you will tidy that up once the servo arms have been attached and calibrated.

Select the correct channel number in the app, and enable it. Then move the

slider to a PWM value of 300. Attach the servo arm onto the splined drive

shaft, such that it is just past the vertical 12 o’clock position. Then check that

by moving the slider towards 1500 the servo arm can reach the vertical

down position, travelling in an anti-clockwise direction.

Once you are happy that the lever arm is in the optimum position, screw the

arm onto the servo shaft, to retain that location.

Repeat this process for all 3 right-hand knee servos.

In a similar fashion, attach left-hand knee servos to the hip joints. Select the

correct channel number in the app, and enable it. Then move the slider to a

PWM value of 1500. Attach the servo arm onto the splined drive shaft, such

that it is just before the vertical 12 o’clock position. Then check that by

moving the slider towards 300, the servo arm can reach the vertical down

position, travelling in a clockwise direction.

Hip servo

1291

300

Right-hand side viewed

from the front

Hip servo

300

1500

Left-hand side viewed

from the front

Hip

Plate

Hip

Plate

FRK PCA1_10

MRK PCA1_06

RRK PCA1_02

Knee

servo

Knee

servo

FRH PCA1_11

MRH PCA1_07

RRH PCA1_03

FLH PCA0_04

MLH PCA0_08

RLH PCA0_12

FLK PCA0_05

MLK PCA0_09

RLK PCA0_13

Page 9

TechKnowToneIssue: 1.0 Released: 19/02/2024

Course Calibration – Ankle Servos

Attach a lower leg to an ankle servo, and plug it into the corresponding

PCA9685 connector. Ignore the excess wire at this stage, you will tidy that up

once the servo arms have been attached and calibrated.

Select the correct channel number in the app, and enable it. Then move the

slider to a PWM value of 300. Attach the servo arm onto the splined drive

shaft, such that it is pointing downwards and to the right. Then place the

Link Double Leaver part over the servos lever arm as shown. The double

leaver should partially overlap the lower leg as shown (see arrow). Then

check that by moving the slider towards 1500 the link double leaver can

reach the vertical upwards position, travelling in an anti-clockwise direction.

This is to give the lower leg and ankle joint maximum movement (~180°).

Once you are happy that the ankle servos lever arm is in the optimum

position, screw the arm onto the servo shaft, to retain that location. Then

repeat this process for the remaining 2 right-hand ankle servos.

Then repeat the process for the left-hand side, but this time with the start

PWM value of 1250, rather than the 300 used in the above.

Then repeat this process for the remaining 2 left-hand ankle servos.

FRA PCA1_09

MRA PCA1_05

RRA PCA1_01

FLA PCA0_06

MLA PCA0_10

RLA PCA0_14

Page 10

Rh Link Double Leaver

Lh Link Double Leaver

Lh Ankle servo

This procedure is all about attaching the servo arms, provided

with the servos, in a position that will give them maximum

movement.

TechKnowToneIssue: 1.0 Released: 19/02/2024

Course Calibration – Head Tilt Servo

90°
145°

The tilt servo PWM value is set to a value of 768, whilst attaching the leaver arm, placing the ESP-CAM

in the vertical position. This course setting should then allow the head to be tilted forwards and

backwards over a good range. There is an indent in the model to help determine the 90° vertical angle.

Tilt PCA1_15

813

Page 11

TechKnowToneIssue: 1.0 Released: 19/02/2024

Fine Calibration – Hip Centre Points

This diagram shows the hip joints at their respective centre points.

To improve the linearity of the hip angles we record PWM values for these

positions, and then their extreme clockwise and anti-clockwise positions.

90°

90°90°

90°90°

90°

Hip Angle Gauge

To make the process of determining these

PWM values easier, you can print off and use

the bespoke angle gauge, shown here in blue.

Place the SpidaBot on its stand, and pull out

the legs, so that knee and angle joints don’t

interfere with the angle gauge measurements.

The angle gauge sits on the top edge of the

micro plate, and its legs are at the target 60°

and 90° angles. Use the 16-channel controller

app to move the hip joints, such that the legs

align with the gauge. Record the six PWM

values, and enter them into your code.

Make the PWM readings as accurate as

possible. The dither function, built into the

app can usually be used to gain a more

accurate reading. It effectively cycles the PWM

value sent to the SpidaBot, around the set

angle, to see where the servo actually settles.

MRH = 750

PCA1_07

FRH = 841

PCA1_11

RRH = 680

PCA1_03

FLH = 711

PCA0_04

MLH = 777

PCA0_08

RLH = 856

PCA0_12

Page 12

TechKnowToneIssue: 1.0 Released: 19/02/2024

Fine Calibration – Knee Lever Plate

This diagram shows a right-hand knee joints, moved to its vertical position, and the leg facing down.

Here, in step 1, we determine the PWM values needed to move each knee joint to a vertical position;

defined as 0° in this design. Then in step 2 we use the same gauge to determine the PWM values

needed to move each ankle joint to a vertical position; again defined as 180° in this design.

Use the ankle gauge as shown, rested on the surface that the SpidaBot stand is on, using its long

vertical edge to act as a guide and reference. Adjust the servo PWM values to achieve this position

and record their values, as seen here.

FRK = 350PCA1_10

MRK = 375PCA1_06

RRK = 384PCA1_02

FLK = 1227 PCA0_05

MLK = 1254PCA0_09

RLK = 1214PCA0_13

Ankle

Gauge

0°

180°

FRA = 333 PCA1_09

MRA = 354 PCA1_05

RRA = 305 PCA1_01

FLA = 1218 PCA0_06

MLA = 1257 PCA0_10

RLA = 1258 PCA0_14

Step 1Step 2

Ankle

Gauge

Page 13

TechKnowToneIssue: 1.0 Released: 19/02/2024

Fine Calibration – Hip Collision Points

This diagram shows the hip joints, moved from their centre 90° positions,

to a point where they just touch the adjacent legs. Each leg is shown as

being in two positions. The collision points are denoted by a star:

These angles are determined with the knee joints in their

upright positions (set on the previous page), and were

obtained from the 3-D model of the SpidaBot. Again use the

16-channel app to rotate the hip joints, to position the legs

as shown, and record the PWM values needed for each.

RearFront

Note that the collision points at the rear, are

associated with the servo wire clips, and not the top

of the knee joints, like the others.

The true angles of these collision points, were

determined from the 3D model. Both the

relationship of PWM values to angles, and their

collision points are stored in code as limits.

For example the front right-hand hip servo has the

following definitions in code:

PCA1_07

PCA1_11 PCA1_03

PCA0_04

PCA0_08

PCA0_12

MRH = 497

FRH = 578 RRH = 945

FLH =

470

MLH = 538

RLH = 617

MRH = 1010

RRH =

482
FRH =

1096

FLH = 955

RLH =

1060

MLH = 1025

136°

44°

44°

136°

44°
131°

131°
44°

136° 44°

44° 136°

90°

90°

90°

90°

90°

90°

Page 14

This relationship between PWM value and arm

angle is important, as we use angles to define

movements, to which we then map PWM values.

TechKnowToneIssue: 1.0 Released: 19/02/2024

Fine Calibration – Knee & Ankle

This diagram shows the knee joints, moved to its horizontal 90° position, with the lower leg also positioned

horizontally. For each leg we can record two PWM values, one for each servo, knee and ankle. The knee 90° angle

is set first, to ensure it is horizontal, before determining the lower leg ankle 0° degree value. Since the ankle value

is set, after the knee, it is critical that the knee adjustment is as accurate as possible.

So do step 1 and determine the knee PWM value. Then follow that with step 2 to determine the ankle PWM

value. Then repeat this process for all six legs. Slide the ankle gauge in and out, whilst lowering the leg, to

determine the point at which it just fails to touch it.

90°

Knee

Gauge

Hip servo

FRK = 825PCA1_10

MRK = 862PCA1_06

RRK = 875PCA1_02

FLK = 762 PCA0_05

MLK = 809PCA0_09

RLK = 730PCA0_13

Ankle

Gauge

0°

Step 1
Step 2

FRA = 1288 PCA1_09

MRA = 1324 PCA1_05

RRA = 1283 PCA1_01

FLA = 296 PCA0_06

MLA = 354 PCA0_10

RLA = 330 PCA0_14

Page 15

TechKnowToneIssue: 1.0 Released: 19/02/2024

Ankle

Gauge

90°

Hip servo

Fine Calibration – Ankle 90°

Return the knee joints to their vertical 0° positions, using the values recorded earlier. Then use the top edge of the

ankle gauge to set the ankle servo, such that the leg is horizontal, in its 90° position, as shown in the diagram.

Repeat this for each leg, recording their PWM values. This concludes the leg calibration process, and now all of

the PWM values can be defined in your code. View the first tab of the code to see how this is done.

For example, front left ankle servo value here, is defined as: #define FLA90 759 within the IDE; where the

associated angle of 90° is part of the naming convention.

0°

FRA = 817 PCA1_09

MRA = 853 PCA1_05

RRA = 805 PCA1_01

FLA = 759 PCA0_06

MLA = 791 PCA0_10

RLA = 806 PCA0_14

Ankle servo

Knee

servo

Page 16

TechKnowToneIssue: 1.0 Released: 19/02/2024

Fine Calibration – Knee 150°

Here we swing the knee joint down such that the lower part of the leg is vertical. This is defined as its 150°

position, as shown in the diagram. Note that in order to do this the associated ankle servo needs to be turned off

and it will need to be positioned as shown by hand, as it is not possible to drive the servo into this positon.

The sloping edge of the kneed gauge is used to check the knee angle.

Repeat this for each leg, recording their PWM values. This concludes the leg calibration process, and now all of

the PWM values can be defined in your code. View the first tab of the code to see how this is done.

For example, front left ankle servo value here, is defined as: #define FLA90 759 within the IDE; where the

associated angle of 90° is part of the naming convention.

Knee

Gauge

150°

FRK = 1149PCA1_10

MRK = 1191PCA1_06

RRK = 1196PCA1_02

FLK = 451 PCA0_05

MLK = 483PCA0_09

RLK = 432PCA0_13

Hip servo

Ankle servo

Knee

servo

Page 17

TechKnowToneIssue: 1.0 Released: 19/02/2024

Leg Angles

This diagram summarises the leg angles, and their range of movements, for both right and left handed legs. Note

that due to physical constraints of wiring clips, the rear hips can only swing to a maximum of 131°, not 136° as

shown here.

Also note that the angles on one side of the body are effectively the reverse of those on the other side. But

consistent, in that to push the toe of a given leg outwards, we move the ankle angle towards 0°. And to swing the

hips in a rearward direction we sing all hip angles towards 136°.

180°

0°

0°

150°

Front

Rear

0°

150°

180°

0°

136°

44°

90°

136°

44°

90°

90°90°

Page 18

TechKnowToneIssue: 1.0 Released: 19/02/2024

90°

145°

68°

Fine Calibration – Head Tilt

The head pan and tilt servo values are less critical than the leg servos, as they have no effect on the movements

of the SpidaBot. Nevertheless we need to calibrate and set limits for the head to work correctly. The diagrams

below show the tilt angles for the head, for which you record PWM values; such as Tilt68 and Tilt90.

When tilting forward we want to avoid hitting the micro plate cover, so determine a value for Tilt68 which does

not give a knocking sound when the head is moved quickly towards it. Otherwise unintentional collisions will have

the effect of lifting the camera module out of its socket strip. In my code these values are recorded as:

Tilt = 660 PCA1_15 Tilt = 801 PCA1_15 Tilt = 1101 PCA1_15

Page 19

Collision point

TechKnowToneIssue: 1.0 Released: 19/02/2024

Fine Calibration – Head Pan

The head pan limits are derived from the 3D model as +/- 60°. We determine the PWM value for the head looking

forward, and define this as 90°. Then swing the head to the left by 60° to the P30 value, and to the right by 60° to

the P150 value. In my code I recorded the values as follows:

90°

30° 150°

Pan30 = 1085 PCA0_00 Pan90 = 808 PCA0_00 Pan150 = 537 PCA0_00

Page 20

Ensure that with the head tilted forward, to its T68 value, that the extremes of the pan angle do not cause

collisions to occur.

TechKnowToneIssue: 1.0 Released: 19/02/2024

MPU6050 Calibration

With the MPU6050 mounted on the roof of the micro plate as

shown, the following principles apply

Pitch - X gyro, +ve tilt forwards, -ve tilt backwards

- Y accelerometer, -ve lean forwards, +ve lean backwards

Roll - Y gyro, +ve tilt right down, -ve tilt left down

- X accelerometer, +ve lean right, -ve lean left

Yaw - Z gyro, +ve turning right ,-ve turning left

- Z accelerometer, -ve upright, +ve upside down

Yacc+

Yacc-

Xacc-

Xacc+

Zacc+

Zacc-

Pitch

+

-

Roll

+

-

Roll

-

+

Pitch

-

+

Yaw

+

Page 21

Use the Display Monitor+ app,

and the MPU displays, to

determine offsets for your MPU.

Set the offsets to zero initially, so

that you can see there raw

readings.

To improve the accuracy of the X

and Y offsets, you can rotate the

SpidaBot, about its vertical axis,

to acquire min/max values.

It is unlikely that the surface upon

which the SpidaBot is resting is

truly level.

TechKnowToneIssue: 1.0 Released: 19/02/2024

Battery Voltage Calibration

See Lithium discharge curve obtained from the internet. In this analysis the

lipo battery consists of three identical batteries connected in series.

Assume fully charged 8.2v battery max voltage is VBM >= 8.4v max (charging)

Set battery warning point at VB = 7.2v (2 x 3.6v)

Set battery critical point at VBC = 6.6v (2 x3.3v)

The ESP32 is powered via a 5v voltage regulator, connected to the Vin pin, but

the 6k8 supply sampling resistor is connected to source VBatt.

For ESP32 VADC == 4095 on 12-bit converter (4095 max).

If we use a 6k8 resistor feeding A0 and a 3k3 resistor to GND, we get a

conversion factor of 10.1v == 4095, or 2.47mV/bit, or 405.4 bit/v

Using a Multimeter and a variable DC supply, I determined the following VADC

values for corresponding threshold voltages:

MAX: (100%) VM = 8.2v, gave A0 = 3032 on VADC (2 x 4.1v)

HIGH: (80%) VH = 7.6v, gave A0 = 2773 on VADC (2 x 3.8v)

WARNING: (20%) VB = 7.2v, gives A0 = 2611 on VADC (2 x 3.6v)

CRITICAL: (0%) VBC = 6.6.0v, gives A0 = 2372 on VADC (2 x 3.3v)

The code will sample the battery voltage on power-up to ensure it is

sufficient, then at every 40ms interval, calculating an average (1/50) to

remove noise. It also detects no battery as USB mode.

In the code I have assumed a discharge curve ranging from 8.2v (100%) to 6.6v

(0%) capacity, using the overlay lines shown. The rate of discharge is

monitored and used to predict the life of the battery in use.

Note: If connected to USB port with internal battery switched OFF the ADC

will read a value 5 volts (A0 = 1919) or less. So if the micro starts with such a

low reading it knows that it is on USB power.

VBatt

6k8

3k3

VADC

Critical discharge voltage

100%

20%

Critical shut-down voltage

A0

Lithium Battery

80%

0%

4.1v

3.8v

3.6v

3.3v

Page 22

