
TechKnowToneIssue: 1.0 Released: 18/03/2021

Reach Robot Mk1
Programming App

TechKnowToneIssue: 1.0 Released: 18/03/2021Page 1

Introduction

Whilst the Reach Robot can be easily controlled via a Wii classic controller, in order to control

and develop complex movements for a robot like the Reach Robot it was necessary to create a

software application to run on a PC. The ‘Move Trainer’ app was written in C++ using a

development environment called Processing. The IDE used in Processing was the forerunner to

the Arduino IDE, so it provides a familiar interface to work with, and I recommend it to anyone

wanting to create PC applications. See image bottom right of the Processing IDE.

When you invoke the app you are presented with the form shown top right. There is a graphical

representation of the robot on the right-hand side, and a list window in the centre, which

initially only contains one line of servo values. The image shown here is one of a complex move

sequence loaded into the app. Start the app now whilst reading this.

Beneath the list window are a number of buttons, and communication fields; and the bottom

field is an integrated help system. As you move the mouse over the form, help messages

appear, to describe the function of the item beneath the mouse pointer. Give it a try.

To use this Windows app you need to be connected to the robot via a USB serial link. During the

process of establishing a connection between the robot and the app, the robot sends reference

values to the app. Four of these values appear in the ‘Home’ fields on the left of the window.

The app will not work normally until such values have been received from the robot.

Note that the app has a split window view of the list, to aid editing long lists, which can be

toggled using the button to the left of the list. All of the background graphics for this app

were created using PowerPoint, and saved as a .png file.

Processing apps can be exported as both 32-bit and 64-bit executable files, and I have provided

both with this release.

TechKnowToneIssue: 1.0 Released: 18/03/2021Page 2

Move Trainer

The app provide different means by which you can adjust servo values,

which are presented in four vertical colour coded columns. You can click

on a number in the list, you can click and drag on the image of the robot,

or you can enter adjustments using keyboard AWSD<>^v keys.

Once you have made the physical USB connection, you can connect the

app to the robot by clicking on the COM: field, which displays – NA –

initially in red. If the app is able to connect, it will display the Windows

COM number in black. Note that a left mouse click invokes a USB

connection, and a right click breaks a connection. This is useful to know,

as you may want to upload code to you robot from the IDE, and if the app

is connected to the serial port the IDE upload will fail.

Whilst servo PWM values normally range from 1000 – 2000s, in this

system we store values relative to their ‘Home’ positions, which prevents

changes being needed should a servo fail, and need to be replaced.

Having made the connection to the robot you are now in a position to control it, but by default the robot is set to a ‘SAFE’

condition, and this is indicated by the green box drawn around the OFF button. This allows for changes to be made to the list of

servo values without the robot reacting to them, which could cause significant problems. To make the robot ‘LIVE’ you simply

click the ON button and the box drawn around it will go red if the robot is connected.

By default the robot will normally be in the REST position. If the servos are ON, then clicking on the READY button will move the

robot to the ‘Home’ position, and the values in the active line of the list will change to suit. Now click on the START button and

watch the robot move forwards and down. Each time you click one of these buttons, the robot moves to that position and the

list changes. With this knowledge we will now create a simple movement…

TechKnowToneIssue: 1.0 Released: 18/03/2021Page 3

A Simple ‘Move’ Program

With the servos active ON once again click on the REST button. Then click

on the ‘N’ button, to insert a new line. Note that the new line becomes

the active line, and its values are set to the previous line. Now click on

the READY button to move the robot to that position and store the new

values. Again click on the ‘N’ button toe insert a new line, which is a copy

of the ready position, and finally click on the START button to set the

servo values for that position. You should now have a list similar to the

one on the right, but your servo values will be a little different.

You can now ‘Play’ this sequence of movements once, by clicking on the

play button, or multiple times by clicking on the repeat button, until

you stop the play process. Or you can scroll through the list with the

mouse wheel or arrow keys to achieve the same effect.

Now scroll the list to make the 2nd line active (READY) and then click and

drag the multi-move button in the centre of the robot image.

The robot should respond to your mouse movements by moving both servo S1 and servo S2 respectively, and the list values will

change whilst you do this. Similarly you can click and drag on a single servo and change its value by moving the mouse in the

direction of there associated arrow icons.

You now know how to change row values in the list and add new lines. A left click on the ‘N’ button creates a new line after the

active line, and clicking with the right mouse button will create a new line before the active line. So you can now experiment

and create a series of movements, play them and single step through them, forwards and backwards. Give it a try.

You can also select one or more lines, by clicking in the left-most column (line number), which gives you the ability to cut, copy

and paste groups of lines, as well as move them up/down the list with the arrow buttons , which appear when lines are

selected. We will next look at special functions….

TechKnowToneIssue: 1.0 Released: 18/03/2021Page 4

Special Functions

We have seen that a list of movements can be created, with each row

consisting of four servo values, S0 – S3. If the value received for servo S0

is >= 5000, then the robot considers that row to be a command line, and

not simply servo values. To see how that works we will insert a ‘clap’

command. Scroll the list so that the last line is the active one, and then

click on the clap button, beneath the ‘N’ button. The app will now

insert a clap command into the list; commands are listed in red font. In

the blue column (S1) the number will be 1, but you can click on that value

to change it to 3.

Now when you play the sequence, when the robot gets to the last line it

should hold its current position, but clap its jaws 3 times. The clap

command ranges from 1 – 10, and in this example we have simply set

servo S0 = 5002, and S1 = 3, but we don’t see those values as the app

automatically presents them as commands in the list. If we click on the

‘Clap’ word in the S0 column, it will also toggle to ClapRnd.

The clap command has now changed value to 5015, which means that it is a random clap ranging from values S1 to S2, and the

S2 value now appears in the list, and can be changed by clicking on it, as before.

This simple, yet powerful system, enables you to insert other commands like delays and changes in speed for example, where

‘Delay’ can be toggled between random delays and inter-move pauses, giving the robot a stepped movement, rather than fluid

one.

You will see that there are also buttons for inserting functions like For… Next loops, Goto and Gosub branch instructions, and

you can even include ‘Point’ registers, preloaded with ‘AddPnt’ vectors that allow sequences to indirectly branch to different

parts of the list in a random fashion, using GotoRnd and GosubRnd commands.

TechKnowToneIssue: 1.0 Released: 18/03/2021Page 5

Make your comments

As you start to develop longer and longer movement sequences, which

may include Gosub… Return branches it is important to include short text

comments to remind you what is happening. In the image to the right

you will see that I have included some comments in the first two rows,

and I’m currently editing the 3rd row.

To start editing text you simple click in that field. The text editor code is

simple, but it does support delete and cursor movements with the arrow

keys. Pressing the keyboard RETURN key moves you onto then next line,

whilst saving the line being edited. Pressing the ESC key exits the editor

without saving the latest changes. So an editing session normally ends

with the RETURN key (save), followed by the ESC key (exit).

If there are command in the list, the text editor will simply jump over

them. You can also move up and down the rows by pressing the arrow

keys, whilst remaining in text edit mode.

No UNDO

To save on complexity, a common feature not supported in this app is UNDO. So you do need to be carful when making changes,

as you can effectively overwrite things that you might want to keep. What you can do however is that you can ESCape out of a

mouse movement, returning the robots servos to their starting positions. And you can place a copy of the whole of your list into

one of three temporary stores, and recall them at any time. However the memory stores do not store your text comments, so

they can be lost, and the servo data is lost once the app is terminated.

LIMITATIONS

At present the app and robot store up to 500 movements (list rows), which should be enough for most sequences; but the is

scope to significantly increase that value if needed. Get in touch if that is the case.

TechKnowToneIssue: 1.0 Released: 18/03/2021Page 6

EXPORT & IMPORT

Whilst the Move Trainer does not save data to disc, it does have the

ability to export and import data using the Windows clipboard. In doing

so it treats the data as if it were being used in a .ino file, using the

function playMemLoad(). To see this, we will open an empty file using

the Windows Notepad app and copy data into it. To copy data onto the

clipboard click on the copy button lower left, next to Clear.

If you then perform a paste operation within Notepad you should see the

data as presented here. Note that the Home reference values are also

exported at the start, and that servo angles are normalised to the Home

values. Also note the 5002 code for the clap command. You would

normally paste this code directly into a function within the Arduino IDE,

but you can also save it to disc from Notepad if you wish.

This process also works in reverse, so you can take date from your .ino

file by copying it from the IDE, or from a saved Notepad file. To see this,

click on the Clear button to reset the list, then select the playMemLoad()

items in Notepad and copy them. Then click and hold the paste button

next to the Clear button. After a short delay your data should then

appear in the Mover Trainers list.

You can test this further by going to the Move_Engine tab of the IDE and

finding a function containing playMemLoad() data, and cut-n-paste it

directly from there.

I hope this introduction has been helpful.

