
TechKnowToneIssue: 1.0 Released: 02/05/2024

PIXAR Lamp
Servo Calibration

An important process, that will govern your robots performance.

TechKnowToneIssue: 1.0 Released: 02/05/2024

MG92B

Page 2

Why do we need to calibrate the servos?

• No two servos are the same.

• Servos can overheat and be damaged if not setup correctly.

• Course calibration must be performed during the assembly process.

• This sets approximate positions for the leaver arms.

• A servo drive shaft has 20 splined teeth == 18° (best fit +/-9°)

• Course calibration ensures servos are within mechanical range/limits.

• Fine calibration sets angles, and min/max robot physical limits.

• The ESP32 C++ code needs limit values in order to work accurately.

• Hence, all PIXAR robots have a unique set of calibrated PWM code values.

• No two PIXAR’s would ever be exactly the same.

• Code limits. and default values would be different for each one.

• Once calibrated we can use angles, as common values, not PWM.

Servo calibration is performed in three stages:
• Course, ensures mechanical parts are assembled correctly.

• Fine calibration, performed during testing, for accurate movement.

• Repeat this process for a given servo, if it is ever replaced.

Only use genuine Tower Pro MG92B servos, for best performance.

20 teeth

18°

TechKnowToneIssue: 1.0 Released: 02/05/2024

Servo Testing

The PIXAR lamp employs 5 powerful MG92B servo motors, providing the high

torques needed to move it efficiently. Course calibration, during the

construction phase, is most easily performed using a HJ servo tester. These

relatively low cost devices, explained on the next page, provide an effective

means of determining servo PWM values, and can be used on all of your

projects that employ servos using PWM as the control signal.

I have created a Windows app which, when used with an ESP32 micro running

the PIXAR code, enables you to control up to 16 servos. Selected servos will

respond to the on-screen slider settings, so you can determine what PWM

values are required to set the servo control arms to a particular position.

This app is used for fine calibration, after the build process. It is mainly used to

determine limits of travel, at the extremes of movement. These limits also

correspond to specific angles, which then allow the robot to be controlled by

mapped angle values, making them independent of the servos PWM values.

This app can be used with other projects employing servos, provided that you

use the C++ code in PIXAR lamp, which enables the micro to decode and

implement the serial commands. It Is designed to work with a range of servo

types, not only conventional servos like the MG92B. See the page which

provides an overview of this app.

Select

PWM Freq.

Enable

outputs

Select

channel

Page 3

TechKnowToneIssue: 1.0 Released: 02/05/2024

Signal

+4.8 - 6V

GND

Pins have common connections

HJ Servo Consistency Tester
Select Button functions:

• Variable (Pot) pulse width 800 – 2200 µs (default mode)

• Fixed constant pulse width 1500 µs, centre position

• Sweep (Pot) pulse width from 800 -> 2200 -> 800 µs

Pulse Width Button functions:

This is actually pulse frequency (Hz)

• 50H = 50 Hz - run MG92B at this frequency (default)

• 125H = 125 Hz

• 250H = 250 Hz

Pot

50Hz 125Hz 250Hz

Signal

+4.8 - 6V

GND

Page 4

TechKnowToneIssue: 1.0 Released: 02/05/2024

Course Calibration

At this stage you are in the process of building the

robot and attaching leaver arms to the servos.

These diagrams show you what PWM values to

use, with a Servo Consistency Test box, to position

each servo for the fitting of its leaver.

Note that all of the joints are at right-angles,

when fitting the servo leavers.

If you don’t have a Servo Consistency Test box,

then you can flash code into the ESP32 micro, and

use the supplied Windows 16-channel app to set

the PWM values. Then attach the leaver arm to

the servo as shown, to best achieve the centre

position. The splines on the drive shaft may

compromise your ability to achieve this exactly

(remember the +/-9°), so find the best position.

1000µs

Servo 3

1500µs

Servo 4

1500µs

1500µs

Page 5

See next page

Servo 1

Servo 0

Servo 2

90°

TechKnowToneIssue: 1.0 Released: 02/05/2024

Course Calibration

For servo 2 we adopt the same method; but in

this case we close up the joint, so that it is at its

minimum angle, resting on the cross brace. There

is a pinch point where the cross member touches

the lower arm. Use this position.

Out of interest, for angles you can use a digital

protractor, if you have access to one. They aren’t

very dear, and can be very useful for servo

projects like this.

2200µs

Page 6

Servo 2

Pinch point

2200µs

TechKnowToneIssue: 1.0 Released: 02/05/2024

16-channel Controller App

This Windows app communicates with your ESP32 micro, using the USB

serial port, or over Wi-Fi. When you first connect it to the micro, it will

request default values from it, which are then used to position the first five

sliders (for PIX), to represent those default values.

The app can be used in several modes. By default it is set up for use with

PCA9685 16-channel I2C controller boards; but for the PIX project you can

switch to PWM mode by simply clicking on the bottom left ‘Processing’

logo. Initially you will want to use the app in ‘PWM Mode’, but later it may

be useful to use ‘Angle Mode’.

From left to right, the first column is 16 ON/OFF buttons. When a channel

is ON the slider will be coloured red, and values will then be sent to the

micro as the slider is moved. The 2nd column represents the values being

sent; which will change as you move the sliders. The 3rd column represents

the lower limit of the slider. Clicking in the field will set this to the current

value, and is a useful way of limiting the slider range. Then you have the

click-n-drag sliders themselves. In the 5th column we have the slider upper

limits. With the lower and upper limits set, you can then freely move the

slider, to swing a servo through its desired range of movement.

At the bottom of the app you will see fields for the USB COM port, receive

(Rx) and transmit (Tx) fields, and below them a useful Help field.

If a COM port connection has not been established, the COM field will be in

red. To force a connection attempt, simply click-left in the COM field. If a

connection is established, the text will turn blue and the COM port number

will be displayed. Click-right to cancel a connection, as you may want to

download code to your micro over the same USB link.

Page 7 Click to change mode

TechKnowToneIssue: 1.0 Released: 02/05/2024

Fine Calibration – Servo 0

Servo 0, mounted in the base, swings the arm from

side to side. The 3-D models include three calibration

marks; one for forward (90°), one 30° to the left (60°),

and one 30° to the right (120°).

By convention, in the PIXAR code their corresponding

PWM values are defined as follows:

S0_60 1626 30° to the left

S0_90 1310 forward

S0_120 994 30° to the right

Use the 16-channel Servo Controller app, in PWM

mode, to move channel 0 and determine these PWM

values for your servos. I have included mine here for

reference, and included them in the ESP32 code.

90° 60°
120°

Note that when you invoke the 16-channel app it will start up in PCA9685 mode, by

default. You need to switch it to PWM mode by clicking on the Processing logo button,

bottom left. Successive clicks on this logo will change the mode of the app; there are 4

modes in total; which can be used in other projects too.

Page 8

Servo 0

TechKnowToneIssue: 1.0 Released: 02/05/2024

Fine Calibration – Servo 1

Servo 1, mounted at the bottom of the lower arm,

swings the arm forwards and backwards. The 3-D

model includes physical stops, at the rear, to

prevent the arm from going backwards more than

45°. This position can be used for one of the

measurements. The other two angles are set and

measured using a 45° set square, as shown.

In the code their corresponding PWM values are

defined for servo 1 as follows:

S1_45 2008 45° leaning backwards

S1_90 1592 upright, vertical

S1_120 1263 30° leaning forwards

Use the 16-channel Servo Controller app to move

channel 1, to determine the PWM values for your

servo. I have included mine here for reference,

and included them in the code.

90°

45°

Note: that when you invoke the 16-channel app it will start up in PCA9685 mode, by

default. You need to switch it to PWM mode by clicking on the Processing logo

button, bottom left. Successive clicks on this logo will change the mode of the app;

there are 4 modes in total. Which can be used in other projects.

At the 45° angle, the servo PWM must not be set so high a value that it is driving the

arm into the physical stop limit; but just very close to it. By using an external power

supply, with current sensing, you will see the current rise rapidly when the servo

effectively hits the end stop, so you can back it off slightly from that position.

Page 9

Servo 1

120°

Limit

TechKnowToneIssue: 1.0 Released: 02/05/2024

Fine Calibration – Servo 2

Servo 2, mounted at the top of the lower arm, swings

the arm upwards and downwards. The 3-D model

includes two physical stops, one at the rear of the

forearm, and one below it, to limit the arm movement.

These positions can be used for two of the

measurements. The other 90° angle is set and measured

using a set square, as shown.

In the code their corresponding PWM values are defined

for servo 2 as follows:

S2_20 2165 20° leaning downwards

S2_90 1428 horizontal

S2_155 710 65° leaning upwards

Use the 16-channel Servo Controller app to move

channel 2, to determine the PWM values for your servo. I

have included mine here for reference, and included

them in the code.

Use the external power supply, current sensing, to detect

and avoid exceeding physical limits.

Page 10

90°

155°

20°

Servo 2

Limit

Limit

TechKnowToneIssue: 1.0 Released: 02/05/2024

Fine Calibration – Servo 3

Servo 3, mounted at the end of the forearm, swings the

lamp upwards and downwards. The 3-D model includes

two physical stops, one at the rear, and one below it, to

limit the tilt movement. These positions can be used for

two of the measurements. The other 90° angle is set

and measured using a set square, as shown.

In the code their corresponding PWM values are defined

for servo 3 as follows:

S3_60 792 30° leaning backwards

S3_90 1120 vertical, looking forwards

S3_180 2018 90° looking downwards

Use the 16-channel Servo Controller app to move

channel 2, to determine the PWM values for your servo.

I have included mine here for reference, and included

them in the code.

Use the external power supply, current sensing, to

detect and avoid exceeding physical limits.

Page 11

180°

Limit

Servo 3

90°

60°

Limit

TechKnowToneIssue: 1.0 Released: 02/05/2024

Fine Calibration – Servo 4

Servo 4, mounted at the end of the forearm,

above servo 3, turns the lamp side to side, left to

right. The 3-D model includes a physical stop,

which rotates with the lamp, to limit its

movement. These positions can be used for two

of the measurements. The other 90° angle is set

using visual judgement.

In the code their corresponding PWM values are

defined for servo 4 as follows:

S4_33 2030 57° turned to the left

S4_90 1458 central, looking forwards

S4_147 932 57° turned to the right

Page 12

90°

33°

147°

Limits

Use the 16-channel Servo Controller app to move channel 4, to determine the PWM

values for your servo. I have included mine here for reference, and included them in

the code.

Note - you can turn on servo 3 and set it to the vertical position, to steady the lamp

whilst taking these PWM readings.

Use the external power supply, current sensing, to detect and avoid exceeding

physical limits.

Stop

TechKnowToneIssue: 1.0 Released: 02/05/2024
Page 13

Angle Summary

This diagram summarises the range of angles defined for

each of the five servos, and acts as a useful reference,

when working out moves for PIX.

Note that the elastic tensioner works to not only assist

with the lifting of the forearm, but also has a tendency to

pull the lower arm backwards, This makes it necessary to

raise the forearm, to reduce the tension, when wanting

to move the lower arm forward. Otherwise it will fail to

do so.

I used the Windows app in angle mode, along with an

external DC power supply, to determine the best range of

angle for ease of moving the forearm and lower arm

servos. These ranges were then built into the code as

limit ranges.

90°
60°

120°
Servo 0

Servo 1

90°

45°
120°

Servo 2

20°

90°

155°

Servo 3

180°

90°

60°

Servo 4

90°

33°

147°

Servo 4

TechKnowToneIssue: 1.0 Released: 02/05/2024
Page 14

View Space

300

120.0°

870-300

60.0°

-870

-950

The view space map can be used to determine angles for the robot, where it has detected a face. Servo 0 and 4 map the turning of the

base and head into a horizontal angle. Servo 2 and 3 map the vertical angle. Servo 1 is ignored, as its contribution to height is low. The

robot control system aims to keep the lamp looking horizontally. The location of faces fades over time, but are refreshed. All internal

angles are in x10 integers, to improve speed, whilst not compromising accuracy.

Turning left/right

Base

Lamp

Right

Lamp

Left

400

forward

back

Forearm SRA[2]

Arm Up

Arm Down

90.0° 147.0°

0

90.0°

33.0° 90.0°

100.0°

25.0°

120.0°

60.0°

Lamp SRA[3]

TechKnowToneIssue: 1.0 Released: 02/05/2024
Page 15

Leaver switch operation

I used this diagram during the design phase, to confirm that it should be possible to

move the lamp, and swing it, in order to operate the long leaver switch. Tested later,

this proved to be the case.

Note that I covered the switch with a thin piece of rubber, and enshrined it in heat

shrink sleeving. This was worth doing, as it protects the lamp face, should it fall

forward in an unpowered state.

TechKnowToneIssue: 1.0 Released: 02/05/2024

HuskyLens Camera field of view

I wanted the camera to see the whole image being presented to it, and not be

obscured by the size of the whole in the face plate. Therefore there is a Lense

Disc which was sized accordingly, and then glued into the face plate.

The method I used to get this centre hole as small as possible, was to print

strips of paper with different sized holes in them, and place them over the

opening. There by reducing the size of the hole until it was seen to obscure

parts of the cameras display image.

HuskyLens Camera

Object in view

Lense Disc

Field of view

15mm 14mm 13mm 12mm 11mm 10mm 9mm

You need to have the HuskyLens camera powered up for this, and the rear

cover of the lamp housing removed, in order to view the screen on the rear of

the camera. The hole size I came up with was 12 mm, which suggests that the

view angle of the camera is in the region of 60°.

Page 16

In the end I included a moustache shape for the

Lense Disc, and, as it is a glued insert, you could

include whatever design you wanted for this.

