
TechKnowToneIssue: 1.1 Released: 28/11/2025

Omni-Bot 3x3
Calibration

Some useful information on how to tune the Omni-Bot.

TechKnowToneIssue: 1.1 Released: 28/11/2025Page 2

CAUTION
Lithium batteries can be extremely dangerous, if not handled and cared for properly. This design does not

include any form of current limiting circuit, like a fuse. So, care must be taken to ensure that the wiring

guidelines are followed accurately, that checks are made for short-circuits, and that battery polarities are

marked, and they are inserted the correct way round. Failure to do so, could result in an explosive fire.

Charging Practices: Always remove batteries from your project to charge them. Use a charger, designed for the

battery used, and from a trusted supplier. Choose a flat, non-flammable surface to charge on, away from

flammable materials. Never leave unattended when charging. Don’t charge overnight. Monitor charging to

ensure charge characteristics are as expected. Only pair batteries with similar characteristics. Do not

overcharge, or leave charging for prolonged periods. This increases the risk of damage and fire.

Battery care & maintenance: Stop using a battery if it is swollen, damaged, dented or leaking. Never charge

a damaged battery. Never allow a Lithium battery to discharge below 3.2 volts, as cell damage will occur.

Avoid extreme temperatures. Do not charge or store batteries in very hot or cold environments.

Don’t cover batteries whilst charging, as this can trap heat, causing overheating.

In case of fire: Get out and stay out. If a fire starts, leave immediately, and call the fire brigade.

For low voltage Lithium batteries, water is a safe extinguisher.

Built-in Monitoring: Most of my project designs include code, and circuitry, to monitor battery

voltage, whilst in use. This code then seeks to alert the operator, when the battery has reached a

critical low voltage, before shutting down power consuming circuitry; including the micro. Time

should therefore be spent on calibrating this feature, as a precaution, for good battery

management and maintenance.

Carefully dispose of batteries that damaged, or discharged below their critical voltage.

TechKnowToneIssue: 1.1 Released: 28/11/2025

Component Assignments

Not really a calibration process, but it will

be useful to refer to this diagram when

coding LED patterns, modifying motor

drive routines, or reading sensors.

The diagram shows component

assignments and conventions used in this

design, and their relationship to coding

conventions.

Note in particular the orientation of the

two 18650 Lithium batteries. It is

recommended that you mark the positive

ends of each battery, with a red indelible

pen. And that you also mark the end of

the battery holder as a reminder.

There is not fuse or blocking diode in this

design. So, the incorrect insertion of the

batteries could cause significant damage

to the electronics, including the ESP32

microcontroller.

Page 3

Motor

‘C’

Front right wheelFront left wheel

Rear wheel

Motor

‘A’

Motor

‘B’

L0

L1
L2

L3

L4

L5

L6

L7

L8

L9

L14

L13

L12

L11

L10

SW0 SW1

ESP32

LDR0 LDR1

OLED Display

Ext.Batt.

USB

RCWL 0

RCWL 1RCWL 2

+ve+ve

-ve-ve

AC CW

7.5v

DC

Front

RxTx

Rx

Tx Rx

Tx

TechKnowToneIssue: 1.1 Released: 28/11/2025

Light Sensors

Page 4

The light sensor assembly , at the front of the Omni-Bot contains two

GL5537 photo resistors. As described in the wiring diagrams document,

you select two components that have close to identical characteristics, in

the region of 5 - 6kΩ, under normal lighting conditions. When the light

level is low, the resistance value is high, and the voltage measured on the

ESP32’s ADC pin approaches the upper limit of 4095. Conversely, when

the light level increases, the resistance value falls, moving the ADC value

towards zero.

When connected to the Omni-Bot, the Monitor+ app has a display

screen, which shows the raw values from the left-hand and right-hand

sensors, along with their average values. It also draws a simple bar

graphic which moves from left to right, depending on the relative value

of the two sensors.

My code assigns blue text to items which can be clicked on, to change

their value. On this screen we see that the averaging coefficient ‘Div’ is

set to 20, and the ‘Gain’ of the control system is set to 70.

These photoresistor values are measured at a rate of 100Hz, on an

alternating 5ms cycle in Core 0. Increasing the value of Div will reduce

the effects of noise and transient changes, but it will also effectively slug

or slow down the responsiveness of the system.

The Gain value effectively sets the motor drive response of the system to

the difference between the two value. The aim is to adjust these values,

to deliver a responsive system, but not one that tends to oscillate about

a point of brightness.

The values are shows as 3 digits (020 and 070), as each digit can be

clicked on to change its value. Making it easier to go from a low to high

setting, in a small number of clicks.

GL5537

Select two from may

LDR’s mounted at the

front of the Omni-Bot.

The geometry acts to

provide shade on one

sensor, when the light

source is off centre.

TechKnowToneIssue: 1.1 Released: 28/11/2025

Range Sensors

Page 5

There are three RCWL-1601 acoustic range sensors in this design. These

devices are similar to the well-known HC-SR04 device, but they work well at

3.3 volts, so are more suited to use with an ESP32 micro.

Originally, I intended to trigger all three devices at once, before reading their

individual echo responses. But this idea didn’t work too well, due to

receiving multiple echoes in close environments. There is a page explaining

how the sensor works in my Wiring Diagrams document.

So, they were re-wired such that each sensor can be triggered and read

independently. In Monitor+ there is a screen which displays the three sensor

range values, ad provides control features:

En:Y - toggles the sensor reading process ON/Off. Note that this is a

status flag, so Y = ON, and N = OFF.

M:n - defines which sensor is active. Front = 0; right = 1; left = 2; all = 3-

5, read in a circular fashion; and 6-9 in a pattern of F, R, F, L, F, R….

Ex:n - as these sensor can give false readings, particularly at longer

ranges, the code has an exclusion filter, which effectively ignores

out of range values for a short period of counts; using the previous

good value.

Rate:nHz - is the frequency at which sensors are being read.

Avg:n - is a rolling averaging filter, to smooth consecutive readings.

In Monitor+ you can also look at sensor values, using the ‘Scope’ function, to

see how the sensors are performing in real time. They work best with flat

surface, but the echo can easily be deflected by angled or round surface. A

better option would be to use laser ranging devices.

TechKnowToneIssue: 1.1 Released: 28/11/2025

Control & Testing

Page 6

The Monitor+ app can also be used for testing features of the code, and there is

a display screen assigned to this.

Rather than pressing the button on the ESP32 micro, you can instruct the code

to perform a ‘soft’ reset, even over Wi-Fi. The RESET:NOW! Option provides this

feature.

In order to protect the life of the Lithium batteries, which suffer damage if taken

into deep discharge the code is constantly monitoring battery voltage and

checking for this condition. To test the codes reaction, you can use the Batt: Flat

function; which effectively drops the average reading in the code to zero,

thereby trigging a response. The Omni-Bot should display a warning message,

then shut down power consuming features like the LEDs and OLED display

before sending the micro into deep hibernation mode.

You may want to add test features to your code, say for use during initial setup.

The N/T: TEST flag, can switch between normal and test mode. For example, in

TEST mode, the battery monitoring display switches to Battery+, and in doing so

displays the ADC value read by the micro. The values displayed are used in

calibrating the battery monitoring system. Note that TEST mode also draws

outline boxes in the Monitor+ display, as a reminder it is in that mode.

Rather than pressing the SW0 and SW1 button switches, to select and set

modes of operation, you can do this directly from the Monitor+ app:

Mode: n - selects the new mode to be used.

Task: n - selects the new subtask to be used.

Go! - then directs the Omni-Bot code to run the new mode and subtask.

TechKnowToneIssue: 1.1 Released: 28/11/2025

Battery Voltage Calibration

See Lithium discharge curve obtained from the internet. In this analysis the lipo

battery consists of two identical batteries connected in series.

Assume fully charged 8.2v battery max voltage is VBM >= 8.4v max (charging)

Set battery warning point at VBW = 7.2v (2 x 3.6v)

Set battery critical point at VBC = 6.6v (2 x3.3v)

The ESP32 is powered via a 5v voltage regulator, connected to the Vin pin, but the

6k8 supply sampling resistor is connected to source VBatt.

For ESP32 VADC == 4095 on 12-bit converter (4095 max).

If we use a 6k8 resistor feeding A0 and a 3k3 resistor to GND, we get a conversion

factor of 10.1v == 4095, or 2.47mV/bit, or 405.4 bit/v

Using a Multimeter and a variable DC supply, I determined the following VADC

values for corresponding threshold voltages:

MAX. O.C VOC = 8.4v, gave A0 = 3226 On VADC (2 x 4.2v)

MAX: (100%) VM = 8.2v, gave A0 = 3136 on VADC (2 x 4.1v)

HIGH: (80%) VH = 7.6v, gave A0 = 2872 on VADC (2 x 3.8v)

WARNING: (20%) VBW = 7.2v, gives A0 = 2710 on VADC (2 x 3.6v)

CRITICAL: (0%) VBC = 6.6v, gives A0 = 2460 on VADC (2 x 3.3v)

The code will sample the battery voltage on power-up to ensure it is sufficient,

then at every 40ms interval, calculating an average (1/50) to remove noise. It also

detects no battery as USB mode.

In the code I have assumed a discharge curve ranging from 8.2v (100%) to 6.6v

(0%) capacity, using the overlay lines shown. The rate of discharge is monitored

and used to predict the life of the battery in use.

Note: If connected to USB port with internal battery switched OFF the ADC will

read a value 5 volts (A0 = 1919) or less. So, if the micro starts with such a low

reading it knows that it is on USB power.

VBatt

6k8

3k3

VADC

Critical discharge voltage

100%

20%

Critical shut-down voltage

A0

Lithium Battery

80%

0%

4.1v

3.8v

3.6v

3.3v

Page 7

TechKnowToneIssue: 1.1 Released: 28/11/2025

ICM-42607-P Sensor Orientation

Gyroscopes are set at +/-250 °/sec FSD.

Hence at 32,767 FSD; rotation of 1 °/sec = 131.068

Change in gyro angle come from the time between readings.

On a 4 ms code loop cycle, we would accumulate a count of

32,767 over 250 cycles when rotating at 1 °/sec.

So delta angle per 4 ms cycle = gyro rate * 0.0000305

This diagram shows the orientation of the ICM-42607-P device within the

Omni-Bot chassis, and how its internal accelerometers and gyroscopes

relate to this. In this design we are only interested in the X and Y

accelerometers, and the Z-axis gyro; as they allow us to calculate the

speed and distance of the Omni-Bot, and its angle of rotation.

Page 8

For example, the Monitor+

app can display the angle

through which the Omni-

Bot has been rotated.

This a relative measure, as

there is no accurate way of

determining an absolute

figure.

TechKnowToneIssue: 1.1 Released: 28/11/2025

A

B

C

B

A C

Omni Steering

Page 9

This diagram shows the wiring of the chassis

motors and their associated H-bridge drivers.

The code uses the left-hand joystick values, to

determine the drive characteristics of the motors,

in terms of direction of rotation and relative

power.

Front left wheel

Rear wheel

Front right wheel

AC CW

Vector = (X 2+ Y2)

Angle = tan-1(X/Y)

This then is translated into 12 directions of travel, rather

than an infinitely variable system. This method was

chosen, as a compromise, as the sensitivity of the left-

hand joystick is only 0 – 63, centred on 32.

For an infinitely variable system, you can use the

diagram on the following page to determine the values

needed to drive the Omni-Bot at any angle.

TechKnowToneIssue: 1.1 Released: 28/11/2025

Motor drive factors v joystick angle

-90° 90° 180°-180° 0°

1

-1

Clockwise

Anti-clockwise

Motor ‘B’

Clockwise

Motor ‘A’

Clockwise

Motor ‘C’

Clockwise

Motor ‘B’

Anti-clockwise

Motor ‘A’

Anti-clockwise

Motor ‘C’

Anti-clockwise

-90°0° -30° -60°

60° 30° 0° -30°

30°60°90°

-60°-30° 90°-90°

0.866

1.000

0.500

-0.866

0.000

-1.000

-0.500

11 12 13 14 1515 16 17 18 19 20 21 22 JoyMode

Page 10

For example, 45° left:

Motor A = 0.966

Motor B = -0.259

Motor C = -0.707

Also, motor drive curves for any drive angle.

TechKnowToneIssue: 1.1 Released: 28/11/2025

Max.

Ultrasonic Sensor

Max.

300

Min.

25

30cm 2.5cm

Mid.

163

Back away

Track

95260

Speed-up Slow down
StopStop

380 100 30

160

210

Max.

Max.

320

Reverse

ReverseForward

130400

Speed

These are the values I determined from my

front ultrasonic sensor, and the speed maps I

developed for the back away and hand

tracking functions.

You should be able to find these values in the

code, and if necessary, substitute the values

you have determined from your sensor. Use

the Monitor+ app to display your values.
300

Page 11

100200

30

Range

240

Speed-up Slow downSpeed-up

Range

Range

Omni-Bot

Front

Stop

Rng0
Rng1 Rng2

Rng3

Rng1 Rng2
Rng3Rng0Rng4

Rng5Rng6
Rng7

Track has not been coded

See code function: MainTask_Sonar_Backaway()

