
TechKnowToneIssue: 1.0 Released: 30/10/2023

MandalBot BLE
Calibration

Calibration is an essential process!

TechKnowToneIssue: 1.0 Released: 30/10/2023

Voltage Regulator

Page 2

Set up the voltage regulator independently using an external power supply

and multimeter, before you plug in the micro and drivers. The input voltage

source should be between 8 - 12 volts. Trim the regulators output pot to

achieve 3.3 volts. This is normally done by turning the small potentiometer on

the pcb in a clock-wise direction, to reduce the output voltage. It will normally

be too high to start with, and could damage your electronics if not done first.

Once the robot is wired and assembled, check that the output of the voltage

regulator is still at 3.3 volts, before plugging in the ESP32.

Now insert the ESP32 micro, with the power off, and download the code into

it. When power is re-applied, this should confirm that the RGB LED’s are all

working.

The accuracy of the analogue to digital converter (ADC) in the ESP32 can be

improved by calibrating it’s measurements against a multimeter, whilst using

an adjustable voltage supply. This will give you a much more accurate

indication of remaining battery capacity.

4R7

12v DC

3.3v

Micro Plate

11.4v ==

10.8v ==

12.3v ==

10.0v ==

The value of BatCal is determined, such that the value displayed in the

Monito+ app matches that of the voltage measured at the battery terminals.

The BatCritical value is used to initiate an auto-shutdown of the robot, should

the battery supply fall to or below this level.

If the ESP32 micro boots up on a low voltage reading, it will assume that it is

being fed from a USB supply. This will limit code functionality.

TechKnowToneIssue: 1.0 Released: 30/10/2023Page 3

DRV8825 Stepper Drivers

When you buy DRV8825 stepper motor drivers, they are often supplied with

heatsinks, which need to be attached to the drivers using the conductive sticky

tape on them. Do this carefully, to avoid the heatsink shorting out some of the

pins on the pcb. Once happy with the location, I recommend that you secure them into

position by surrounding their bases in 2-part epoxy glue; as they are quite exposed on the

front of the MandalBot, and could easily be move with handling.

Next connect the robot, in the switched OFF condition, to an external DC supply, set to 12

volts. With the switch like this, the external supply will then be fed through to the internal

circuitry, and you will be able to monitor the current being drawn by the robot.

Using the Monitor+ app, navigate to the Motor Test screen, in TEST mode. Note that when

the display has a border, this indicates that it is in TEST mode, as opposed to DEMO mode,

with no border. On this screen you can modify the variables shown in blue text. For

example, clicking on Motor Test OFF will enter a state in which each motor can be turned

ON and run; and you can set the stepping period Prd and direction Dir too.

With both motors OFF the robot will be consuming a base level current, associated with

running the micro and related electronics. Make a note of this base current. Then for each

motor, turn it ON and adjust its associated DRV8825 driver potentiometer, to achieve a

measured current of base + motor current. The aim is to get the motor current to be 150 -

200 mA, by adjusting the potentiometer. Turning the pot clockwise will reduce the current,

and anti-clockwise will increase it. By default it can be quite high initially, and therefore a

current limited supply is recommended.

Once you have adjusted one driver, then turn OFF that motor and repeat the exercise for

the other one. When you later turn both ON, the current drawn should be equivalent to

the base current + both motors.

The aim is to give the stepper motors sufficient drive current, when static or stepping,

without causing them to over-heat. Excess current will quickly reduce battery life, and run

the motors very hot; and could even lead to them failing.

TechKnowToneIssue: 1.0 Released: 30/10/2023

MPU6050A Orientation & Offsets

With the MPU6050 mounted centrally between the stepper motors

as shown, the following applies:

Pitch - Y gyro, -ve tilt forwards, +ve tilt backwards

- Z accelerometer, -ve lean forwards, +ve lean backwards

Roll - Z gyro, +ve tilt right, -ve tilt left

- Y accelerometer, -ve lean tilt, +ve tilt left

Yaw - X gyro, +ve turning left ,-ve turning right

- X accelerometer, , -ve upright, +ve upside down

Note that the X-axis accelerometer is pointing downwards, when the robot is

upright and balancing. Hence it is greatly influenced by gravity and gives a max

negative reading, equivalent to 1 go (one unit of gravity).

The X-axis value is negative because the gravitational force is acting on the sensor

as if it were accelerating upwards, and therefore in the opposite direction to the

polarity indicated by the diagram. The MPU6050 thinks it is accelerating upwards.

The MPU6050 sensor values will contain offsets, due to manufacturing tolerances,

and may not give maximum values. We therefore need to determine these

offsets, and remove them from readings in our code; there by improving the

overall accuracy of the system.

Set the code offsets to zero initially, as my values are not what you want. Then

place the robot in its stand and use the Monitor+ app to view the gyro and

accelerometer readings, and averages. We use the average values as the offsets.

Note that the MPU6050 is quite sensitive. Gyro offsets

once determined, wont change much. The Zacc value is

particularly important. Rotate the robot about its vertical

axis and average the min/max average readings.

Zacc

Xacc
Xacc

Yacc

MPU6050A

Page 4

TechKnowToneIssue: 1.0 Released: 30/10/2023

Safe Modes Orientation

Vertical, within setpoint range, Safe

Mode transitions from 3 to 4.

Safe Mode 3 – PID output is

ramped up from 50% to 100%.

Safe Mode 4 – PID is in full self-

balance mode. Here we look for

toppling.

Safe Mode 1 transitions to Safe

Mode 2 once the vertical angle is

reduced below 20°. Safe Mode 2

then applies low speed drive to

take the robot to its vertical

position. This aids the self-balance

initiation process.

Lay the robot down on its back.

Safe Mode 0 – robot is looking for

lying down condition, with a

vertical angle of >= 70°. Once laid

down for a 2 second period, the

robot then enters Safe Mode 1.

Note: if the left-hand button is pressed at any time the robot is forced into Safe Mode 0. This enables you to make the robot safe, for

picking up, when it has been laid down and entered Safe Mode 1. The LED colours, and sequences, change to give the user feedback as to

which Safe Mode they are in. The Monitor+ app, when connected over Wi-Fi, provides very useful information on robot angles and Safe

Mode values, as shown in the diagrams above.

Working from right to left, this

explains the process of initialising

the robots self-balancing mode.

1

2

3

Page 5

TechKnowToneIssue: 1.0 Released: 30/10/2023

MandalBot Pitch PID Adjustment

The aim is to balance the MandalBot using its internal PID controller code, when

the robot is vertical, at 0° facing forwards. The angle at which a robot will balance

is based on its shape, and the distribution of weight with it. In other words, its

centre of gravity must be directly above the wheel axle axis for it to be balance.

Page 6

Setpoint angle

The angle at which this balance condition occurs is known as the setpoint for the system, and the code is designed to

find this value automatically, based on the movement of the robot as the PID controller drives the stepper motors and

tries to balance it. Once this is determined experimentally, we set this as the start angle, such that the robot goes easily

into the self-balancing condition from rest.

Start by switching off your I-gain and D-gain values, and set P-gain to be 10.00 using the Monitor+ app. Move the robot

through its start-up procedure, to get into Safe Mode 4 and have the PID controller driving the motors. When you lean

the robot, it should want to drive in that direction. As you increase the P-gain it should become more responsive, and get

to a point where it is almost self-balancing. But beyond this point, increasing P-gain further will lead to instability.

Determine this point, then back-off the P-gain to around 60%. Then start to increase the I-gain and D-gain values, which

should take you into self-balancing. The I-gain integrates the angular error, there by accumulating small errors around the

balance point and causing the PID controller to respond to them, when the P-gain alone would not. The D-gain acts to

prevent overshoot, cause by the accumulating I-gain, ands there by improve stability.

Once your robot is self-balancing, you can look at the Safe Mode screen to see what angle the self-balance setpoint SbSp

has been driven towards, and use this as the start angle going forward.

Here you see the values I arrived at in

tuning my robot, and these are stored

as defaults in the code. You should

arrive at similar figures.

Your robot will balance with a range of

numbers, so here I am trying to get it

to be quite responsive to external

pushes, or obstacles when driving.

