Ball Balancing Robot

Calibration

Ball Balancing Robot Motor Cal.

Ball Balancing Robot Hips Cal.

MPU-6050 Orientation

Movement angles and vectors

If $+X$ \& $-Y$ then:	$\varnothing^{0 \text { to }+90}=57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})$
If $+X$ \& + Y then:	$\varnothing^{0 \text { to }-90}=57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})$
If $-X$ \& $-Y$ then:	$\emptyset^{90 \text { to }+180}=180^{\circ}-\left(57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})\right)$
If $-X$ \& $+Y$ then:	\emptyset^{90} to -180 $=-180^{\circ}+\left(57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})\right)$
Tilt $\mathrm{V}=\mathrm{sqrt}(\mathrm{sq}(\mathrm{x})$	$s q(y)) \quad \mathrm{V}$ is always +ve
Driving force vector $\mathrm{F}==\mathrm{PID}(-\mathrm{V})$	
F needs to drive in opposite direction to V, so	
If $+X$ \& $-Y$ then:	\emptyset^{90} to -180 $=-180^{\circ}+\left(57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})\right)$
If $+X$ \& +Y then:	$\varnothing^{90 \text { to }+180}=180^{\circ}-\left(57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})\right)$
If $-X$ \& $-Y$ then:	$\emptyset^{0 \text { to }-90}=-\left(57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})\right)$
If $-X$ \& $+Y$ then:	$\emptyset^{0 \text { to +90 }}=-\left(57.2958 * \tan ^{-1}(\mathrm{y} / \mathrm{x})\right)$
Where 1 radian = 57.2958 degrees	

Motor drive factors \underline{v} error angle

Balancing Gains

$$
0 \stackrel{\text { 'P' term }=\text { Err * } 17}{ } 255
$$

RPM @ 50 counts of ball rotation

Motor PWM Demand v Power chart

