Ball Balancing Robot

Calibration

RDUINO PEN-SOURCE Page 5

the accelerometer values, which are used in the code for gyro drift correction.

Movement angles and vectors

If +X & -Y then:	
If +X & +Y then:	
If -X & -Y then:	$Ø^{90 \text{ to } +180} = 180^{\circ} - (57.2958 \text{ * tan}^{-1} (y/x))$
If -X & +Y then:	$Ø^{90 \text{ to } -180} = -180^{\circ} + (57.2958 \text{ * } \tan^{-1} (y/x))$
Tilt <mark>V = sqrt(sq(</mark> x) +	sq(y)) V is always +ve
Driving force vector $F == PID(-V)$	
F needs to drive in opposite direction to V, so	
If +X & -Y then:	$Ø^{90 \text{ to } -180} = -180^{\circ} + (57.2958 \text{ * } \tan^{-1} (y/x))$
If +X & +Y then:	$Ø^{90 \text{ to } +180} = 180^{\circ} - (57.2958 * \tan^{-1} (y/x))$
If -X & -Y then:	
If -X & +Y then:	

Where 1 radian = 57.2958 degrees

RPM @ 50 counts of ball rotation

EN-SOURCE

Motor PWM Demand v Power chart

