BallBot 4x4

Calibration

Ball Balancing Robot Motor Cal.

MPU-6050 Orientation

Gyroscopes are set at $+/-250^{\circ} / \mathrm{sec}$ FSD.
Hence at $32,767 \mathrm{FSD}$; rotation of $1^{\circ} / \mathrm{sec}=131$.
To convert this to a gyro angle we use the time between readings.
On 10 ms cycle we would accumulate a count of 1310 over a 100
cycles when rotating at $1 \% / \mathrm{sec}$.
So delta angle per 10 ms cycle $=$ gyro rate $* 0.00007633$

Gyro X \& Y angles to Motor clockwise drive relationships:
Motor $A^{C W}=Y _G y r o$
Motor $\mathrm{B}^{\mathrm{CW}}=\mathrm{X}$ _Gyro
Motor CCW $=-Y$ _Gyro
Motor D ${ }^{\text {CW }}=-X$ Gyro

Note: here we are calling the Pitch gyro X_Gyro and Yaw gyro Y_Gyro to be consistent with the accelerometer values, which are used in the code for gyro drift correction.

Accelerometers read 0 when horizontal, and maximum +/- when vertical. Gravity can be used to aid the measurement of angle, but it is greatly affected by accelerating forces.

LED ‘spirit level’ angles

AccAbsAng = abs(accel_rawX_OA/accel_rawY_OA)
Front

RPM @ 50 counts of ball rotation

Motor PWM Demand v Power chart

