
TechKnowToneIssue: 1.1 Released: 01/02/2023

BalanceBot
Calibration

MPU6050

3-axis

Motion sensor

Understanding the role of the MPU6050 sensor



TechKnowToneIssue: 1.1 Released: 01/02/2023

MPU 6050A Orientation

Page 2

The MPU6050 is a great device for sensing motion, given its integrated 

accelerometers and gyroscopes, one for each of the 3 axis.

It’s low cost means however that it often comes with limitations; one is that 

some devices don’t work well at 5v, and can lock up or not function at all with 

Arduino. The other limitation is that most of the sensors have offsets, which 

add errors to your readings, and need to be measured and eliminated in your 

code. The good news is that once they are measured, and accounted for, they 

tend to stay pretty constant over time.

The mounting of the MPU sensor in your robot will affect which axis you use for 

measurements. In the BalanceBot the MPU is mounted, with its components 

facing forwards. To detect motion affecting balance, we use the output of the Y-

axis gyroscope (rotational pitch), and the Z-axis accelerometer. The other sensor 

values are ignored here, but may be useful in other projects.



TechKnowToneIssue: 1.1 Released: 01/02/2023

MPU 6050A Offsets

Page 3

So how do we determine those nasty offsets, and eliminate them?

The simple answer is that we use code, to repeatedly read the MPU sensor values 

over the I2C bus, once it is mounted in the robot as you want it, and we take an 

average of many readings to determine the best value to use.

This is done with the robot held in a stand, to keep it vertical and steady, as the 

accelerometer sensors are very sensitive. The surface you are actually standing the 

stand on, may not be as perfectly flat as you think, so it can be useful to rotate the 

robot on its vertical axis, between a sequence of readings, to ensure that high and 

low offset limits can be detected, and we can then use their mid-point values.

The code provided in the Cal_Offsets sketch, will take 1,000 readings from the 

MPU, for each of the sensors, and list them to the IDE serial port as a stream of 

data. Whilst it does this, it also cumulates the values and presents an average for 

each at the end of the list. To run it again simply press RESET or modify the code as 

indicated.

Compile and load the sketch into the robot, using the IDE, and switch on the serial 

monitor. Note that the code sets the baud rate to 115200, which is around 11,520 

characters per second, so that the serial port does not get bottlenecked and hold 

up the process.

Note that the offsets for the gyroscopes are not affected by gravity, and the 

orientation of the MPU, where as the accelerometers are. So lets look at some 

results:

U
p

ri
g

h
t

Flat

surface



TechKnowToneIssue: 1.1 Released: 01/02/2023

MPU 6050A Offset data

Page 4

The IDE serial port will list the results from reading the MPU sensor registers, as shown 

on the right. There will be 1,000 readings, presented as six columns, with averages for 

each column presented at the end. In an ideal world, with the orientation of my MPU, 

and its scaling settings defined when it was initialised, it should present AccX as 8192 

for 1g of gravitational force. There should also be a value of zero for AccY and AccZ, as 

they are measuring gravity horizontally. I’m getting this with the robot vertical:

and this with my robot, laid on its back, horizontal:

These results confirm that the MPU sensor has offsets in each axis. As expected, the 

gyros are not affected by the vertical/horizontal orientation of the robot. Note the Y-

axis gyro offset is removed by the robots code on power-up. It also shows that the 

accelerometer sensors are working as expected, with AccX reducing and AccZ

increasing as the robot is re-orientated. Where as Accy remains much the same.

You could easily change the Cal_Offsets sketch to take more readings if you wish, or 

run it several times to get a better average from the results. In this project we simply 

take the value for AccZ in the vertical position, and add it in the code, such that it is 

subtracted from all AccZ readings taken by the robot. My code contains the figure 

2414, not the 2510 shown here. But that offset was taken some years back on a

different table top, so I’m OK with that discrepancy.



TechKnowToneIssue: 1.1 Released: 01/02/2023

Adding the offset to your code (Arduino code ref: Balance_Bot_16_Q.ino)

Page 5

So in my case, when I did this process some time ago, I measured an average offset value of 2414 

for the AccZ accelerometer, when the robot was stood upright, vertically on its stand. For 

improved accuracy, this value needs to be subtracted from every AccZ value you read from the 

MPU6050. In the code, at line 52, you will see the following definition:

The value 2414 is substituted with the value you have measured, changing the sign of the number, 

as it will later be added to the measurement. So 2414 was entered here as -2414.

Later in the code at line 85, we assign this number to a variable as an initial value. This allows the

value, as a variable, to be trimmed during robot movements, if needed.

Later, in line 262 the code adds this offset to the value read from the MPU, in each 4ms cycle.

Note that the main code for the robot performs a self-calibration test coming out of reset for the

GyrY gyro. Since writing the original code however, I now believe that if you have a fairly stable 

MPU6050, you could also measure and define that offset, rather than performing the self-

calibration test each time.


