BalanceBot

Calibration
.) - 7)

- .
NI K
N SN I
& ."' e e |

-~
8
R

Ko
o e
B
)

»

MPUG6050
3-axis
Motion sensor

Understanding the role of the MPU6050 sensor ssue: 11 Released: 01/02/2003 Tech¥nowTone

MPU 6050A Orientation

The MPUG6050 is a great device for sensing motion, given its integrated
accelerometers and gyroscopes, one for each of the 3 axis.

It’s low cost means however that it often comes with limitations; one is that
some devices don’t work well at 5v, and can lock up or not function at all with
Arduino. The other limitation is that most of the sensors have offsets, which
add errors to your readings, and need to be measured and eliminated in your
code. The good news is that once they are measured, and accounted for, they
tend to stay pretty constant over time.

The mounting of the MPU sensor in your robot will affect which axis you use for
measurements. In the BalanceBot the MPU is mounted, with its components

facing forwards. To detect motion affecting balance, we use the output of the Y-
axis gyroscope (rotational pitch), and the Z-axis accelerometer. The other sensor
values are ignored here, but may be useful in other projects.

NdWOLI

lIn:u-:’)-.l

a

-

]

=

-

-
IJIIHII!IRJ .

ot Page 2 Issue: 1.1 Released: 01/02/2023 Tech/nowTone

‘\"

MPU 6050A Offsets <,

S
0
So how do we determine those nasty offsets, and eliminate them? U

The simple answer is that we use code, to repeatedly read the MPU sensor values
over the 12C bus, once it is mounted in the robot as you want it, and we take an
average of many readings to determine the best value to use.

This is done with the robot held in a stand, to keep it vertical and steady, as the
accelerometer sensors are very sensitive. The surface you are actually standing the
stand on, may not be as perfectly flat as you think, so it can be useful to rotate the
robot on its vertical axis, between a sequence of readings, to ensure that high and
low offset limits can be detected, and we can then use their mid-point values.

The code provided in the Cal_Offsets sketch, will take 1,000 readings from the
MPU, for each of the sensors, and list them to the IDE serial port as a stream of
data. Whilst it does this, it also cumulates the values and presents an average for
each at the end of the list. To run it again simply press RESET or modify the code as
indicated.

Compile and load the sketch into the robot, using the IDE, and switch on the serial
monitor. Note that the code sets the baud rate to 115200, which is around 11,520
characters per second, so that the serial port does not get bottlenecked and hold
up the process.

Note that the offsets for the gyroscopes are not affected by gravity, and the
orientation of the MPU, where as the accelerometers are. So lets look at some
results:

A ARDUINO
NS OPEN- SOURCE Page 3
COMMUNITY

@surface

Issue: 1.1 Released: 01/02/2023 Tech Tone

MPU 6050A Offset data

The IDE serial port will list the results from reading the MPU sensor registers, as shown
on the right. There will be 1,000 readings, presented as six columns, with averages for
each column presented at the end. In an ideal world, with the orientation of my MPU,
and its scaling settings defined when it was initialised, it should present AccX as 8192
for 1g of gravitational force. There should also be a value of zero for AccY and AccZ, as
they are measuring gravity horizontally. I'm getting this with the robot vertical:

ARccX ACCY ACCZ GyrXx Syry eyrZ
£<s?® -113 2510 -6382 352 -114%

and this with my robot, laid on its back, horizontal:

AccX AccY Accl GyrX GyrY GyrZ
454 -140 10779 -641 354 -116

These results confirm that the MPU sensor has offsets in each axis. As expected, the
gyros are not affected by the vertical/horizontal orientation of the robot. Note the Y-
axis gyro offset is removed by the robots code on power-up. It also shows that the
accelerometer sensors are working as expected, with AccX reducing and AccZ
increasing as the robot is re-orientated. Where as Accy remains much the same.

You could easily change the Cal_Offsets sketch to take more readings if you wish, or
run it several times to get a better average from the results. In this project we simply
take the value for AccZ in the vertical position, and add it in the code, such that it is
subtracted from all AccZ readings taken by the robot. My code contains the figure
2414, not the 2510 shown here. But that offset was taken some years back on a

_ different table top, so I’'m OK with that discrepancy.

. ARDUINO
M- OPEN- SOURCE Page 4

COMMUNITY

8<62 -110
8458 -116
8458 -141
8257 -13¢
2454 -122
8457 -110
8447 -108
8262 2
£ W ok

E he (-
8450 -
8444

8230

2448

8444

8432

8249

2464

2431 -95
8445 -114
8263 -118
8457 -118
2469 -138
8247 -123
8243 -12¢
8243 -129
8230 -112
2433 -123
8223 -108
8454 -115
28444 -11<
8242 -100
2450 -123
8457 -125
8258 -110
2448 -117
8458 -116
8248 -111
8454 -121
8244 -120
AccX AccY
8249 -113
Issue: 1.1

2524 -640
2529 -640
2516 -643
2517 1& -641
232, -634
252¢ 1 -632
2534

-1 -648
250F -648
247 K~ .640
2509 -63%
2508 -83%
2516 -642
2541 -638
2523 -638
2483 -853
2503 -655
2514 -840
2514 -639
2488 -6<€1
24786 -83%
2459 -633
2471 -640
24E886 -633
2527 -6<0
2524 -640
2509 -62%
2525 -630
25086 -6€0
2475 -634
AccZ GyrX
2510 -6383

Released: 01/02/2023

348 =115
345 =112
351 =120
347 -124
336 =132
342 -130
oo -117
o -1189
-118
-129
25 -12¢
3 =117
1 =126
gz -121
38 %
54 =102
352 =105
354 =106
350 -111
3€3 =102
3&7 =101
359 -85
356 =104
3€0 =102
357 =110
35¢ =107
3589 =110
352 =110
349 =112
355 =113
355 =115
359 =111
350 =116
342 =115
352 =113
348 =112
345 =118
346 =119
352 =113
GyrY GyrZ
52 =114
Tech/nowTone

Adding the offset to your code (Arduino code ref: Balance_Bot_16_Q.ino)

So in my case, when | did this process some time ago, | measured an average offset value of 2414
for the AccZ accelerometer, when the robot was stood upright, vertically on its stand. For
improved accuracy, this value needs to be subtracted from every AccZ value you read from the
MPUG6050. In the code, at line 52, you will see the following definition:

ce
51 // Define constants

52 #define acc_calibration_value -2414; // Enter the accelerometer calibration value, default 100

The value 2414 is substituted with the value you have measured, changing the sign of the number,

as it will later be added to the measurement. So 2414 was entered here as -2414.
Later in the code at line 85, we assign this number to a variable as an initial value. This allows the
value, as a variable, to be trimmed during robot movements, if needed.

83
84 // Declare and initialise global variables
85 int acc_cal_value = acc_calibration_value; // Enter the accelerometer calibration value,

Later, in line 262 the code adds this offset to the value read from the MPU, in each 4ms cycle.

'\"\

)

L

260 dire.requestFrom(gyro_address, 2); // Request 2 bytes from the gyro
261 accelerometer_data_raw = Wire.read()<<8|Wire.read(); // Combine the two bytes to make one integer
262 accelerometer_data_raw += acc_cal_value; // Add the accelerometer calibration value

Note that the main code for the robot performs a self-calibration test coming out of reset for the
GyrY gyro. Since writing the original code however, | now believe that if you have a fairly stable
MPUG6050, you could also measure and define that offset, rather than performing the self-
calibration test each time.

AT ssﬁzrgsm Page 5 Issue: 1.1

Released: 01/02/2023

Tech!

Tone

